Joining data

Code for Quiz 6,more dplyr and our first interactive chart using echarts4r.

Steps 1-6

  1. Load the R packages we will use.
library(tidyverse)
library(echarts4r) #install this package before using
  1. Read the data in the files, drug_cos.csv, health_cos.csv in to R and assign to the variable drug_cos and health_cos, respectively
drug_cos  <- read_csv("https://estanny.com/static/week6/drug_cos.csv")
health_cos  <- read_csv("https://estanny.com/static/week6/health_cos.csv")
  1. Use glimpse to get a glimpse of the data
drug_cos %>% glimpse()
Rows: 104
Columns: 9
$ ticker       <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS"…
$ name         <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoet…
$ location     <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New …
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.366…
$ grossmargin  <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.666…
$ netmargin    <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.163…
$ ros          <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.321…
$ roe          <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.488…
$ year         <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,…
health_cos %>% glimpse()
Rows: 464
Columns: 11
$ ticker      <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS",…
$ name        <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoeti…
$ revenue     <dbl> 4233000000, 4336000000, 4561000000, 4785000000, …
$ gp          <dbl> 2581000000, 2773000000, 2892000000, 3068000000, …
$ rnd         <dbl> 427000000, 409000000, 399000000, 396000000, 3640…
$ netincome   <dbl> 245000000, 436000000, 504000000, 583000000, 3390…
$ assets      <dbl> 5711000000, 6262000000, 6558000000, 6588000000, …
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 5251000000, …
$ marketcap   <dbl> NA, NA, 16345223371, 21572007994, 23860348635, 2…
$ year        <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, …
$ industry    <chr> "Drug Manufacturers - Specialty & Generic", "Dru…
  1. Which variables are the same in both data sets
names_drug  <- drug_cos %>% names()
names_health  <- health_cos %>% names()
intersect(names_drug, names_health)
[1] "ticker" "name"   "year"  
  1. Select subset of variable to work with
drug_subset  <- drug_cos %>% 
  select(ticker, year, grossmargin) %>% 
  filter(year == 2018)
health_subset  <- health_cos  %>%
  select(ticker, year, revenue, gp, industry)  %>% 
  filter(year == 2018)
  1. Keep all the rows and columns drug_subset join with columns in health_subset
drug_subset %>% left_join(health_subset)
# A tibble: 13 × 6
   ticker  year grossmargin     revenue          gp industry          
   <chr>  <dbl>       <dbl>       <dbl>       <dbl> <chr>             
 1 ZTS     2018       0.672  5825000000  3914000000 Drug Manufacturer…
 2 PRGO    2018       0.387  4731700000  1831500000 Drug Manufacturer…
 3 PFE     2018       0.79  53647000000 42399000000 Drug Manufacturer…
 4 MYL     2018       0.35  11433900000  4001600000 Drug Manufacturer…
 5 MRK     2018       0.681 42294000000 28785000000 Drug Manufacturer…
 6 LLY     2018       0.738 24555700000 18125700000 Drug Manufacturer…
 7 JNJ     2018       0.668 81581000000 54490000000 Drug Manufacturer…
 8 GILD    2018       0.781 22127000000 17274000000 Drug Manufacturer…
 9 BMY     2018       0.71  22561000000 16014000000 Drug Manufacturer…
10 BIIB    2018       0.865 13452900000 11636600000 Drug Manufacturer…
11 AMGN    2018       0.827 23747000000 19646000000 Drug Manufacturer…
12 AGN     2018       0.861 15787400000 13596000000 Drug Manufacturer…
13 ABBV    2018       0.764 32753000000 25035000000 Drug Manufacturer…

Question: join_ticker

drug_cos_subset  <- drug_cos  %>% 
   filter(ticker == "JNJ")

drug_cos_subset
# A tibble: 8 × 9
  ticker name  location ebitdamargin grossmargin netmargin   ros   roe
  <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl> <dbl> <dbl>
1 JNJ    John… New Jer…        0.247       0.687     0.149 0.199 0.161
2 JNJ    John… New Jer…        0.272       0.678     0.161 0.218 0.173
3 JNJ    John… New Jer…        0.281       0.687     0.194 0.224 0.197
4 JNJ    John… New Jer…        0.336       0.694     0.22  0.284 0.217
5 JNJ    John… New Jer…        0.335       0.693     0.22  0.282 0.219
6 JNJ    John… New Jer…        0.338       0.697     0.23  0.286 0.229
7 JNJ    John… New Jer…        0.317       0.667     0.017 0.243 0.019
8 JNJ    John… New Jer…        0.318       0.668     0.188 0.233 0.244
# … with 1 more variable: year <dbl>
  combo_df <- drug_cos_subset  %>% 
  left_join(health_cos)

combo_df
# A tibble: 8 × 17
  ticker name  location ebitdamargin grossmargin netmargin   ros   roe
  <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl> <dbl> <dbl>
1 JNJ    John… New Jer…        0.247       0.687     0.149 0.199 0.161
2 JNJ    John… New Jer…        0.272       0.678     0.161 0.218 0.173
3 JNJ    John… New Jer…        0.281       0.687     0.194 0.224 0.197
4 JNJ    John… New Jer…        0.336       0.694     0.22  0.284 0.217
5 JNJ    John… New Jer…        0.335       0.693     0.22  0.282 0.219
6 JNJ    John… New Jer…        0.338       0.697     0.23  0.286 0.229
7 JNJ    John… New Jer…        0.317       0.667     0.017 0.243 0.019
8 JNJ    John… New Jer…        0.318       0.668     0.188 0.233 0.244
# … with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
#   rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
#   marketcap <dbl>, industry <chr>

co_name  <- combo_df  %>% 
  distinct(name) %>% 
  pull()

co_location  <- combo_df  %>% 
  distinct(location) %>% 
  pull()

co_industry  <- combo_df  %>% 
  distinct(industry) %>% 
  pull()

Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text. The company Johnson & Johnson is located in New Jersey; U.S.A and is a member of the Drug Manufacturers - General group.


combo_df_subset  <- combo_df  %>% 
  select( year,  grossmargin,  netmargin, 
   revenue,  gp,  netincome)

combo_df_subset
# A tibble: 8 × 6
   year grossmargin netmargin     revenue          gp   netincome
  <dbl>       <dbl>     <dbl>       <dbl>       <dbl>       <dbl>
1  2011       0.687     0.149 65030000000 44670000000  9672000000
2  2012       0.678     0.161 67224000000 45566000000 10853000000
3  2013       0.687     0.194 71312000000 48970000000 13831000000
4  2014       0.694     0.22  74331000000 51585000000 16323000000
5  2015       0.693     0.22  70074000000 48538000000 15409000000
6  2016       0.697     0.23  71890000000 50101000000 16540000000
7  2017       0.667     0.017 76450000000 51011000000  1300000000
8  2018       0.668     0.188 81581000000 54490000000 15297000000

combo_df_subset  %>% 
  mutate(grossmargin_check =  gp/ revenue,
  close_enough = abs(grossmargin_check - grossmargin) < 0.001)
# A tibble: 8 × 8
   year grossmargin netmargin     revenue          gp   netincome
  <dbl>       <dbl>     <dbl>       <dbl>       <dbl>       <dbl>
1  2011       0.687     0.149 65030000000 44670000000  9672000000
2  2012       0.678     0.161 67224000000 45566000000 10853000000
3  2013       0.687     0.194 71312000000 48970000000 13831000000
4  2014       0.694     0.22  74331000000 51585000000 16323000000
5  2015       0.693     0.22  70074000000 48538000000 15409000000
6  2016       0.697     0.23  71890000000 50101000000 16540000000
7  2017       0.667     0.017 76450000000 51011000000  1300000000
8  2018       0.668     0.188 81581000000 54490000000 15297000000
# … with 2 more variables: grossmargin_check <dbl>,
#   close_enough <lgl>

combo_df_subset %>% 
   mutate(netmargin_check =  netmargin /revenue,
  close_enough =  abs(netmargin_check - netmargin) < 0.001)
# A tibble: 8 × 8
   year grossmargin netmargin     revenue          gp   netincome
  <dbl>       <dbl>     <dbl>       <dbl>       <dbl>       <dbl>
1  2011       0.687     0.149 65030000000 44670000000  9672000000
2  2012       0.678     0.161 67224000000 45566000000 10853000000
3  2013       0.687     0.194 71312000000 48970000000 13831000000
4  2014       0.694     0.22  74331000000 51585000000 16323000000
5  2015       0.693     0.22  70074000000 48538000000 15409000000
6  2016       0.697     0.23  71890000000 50101000000 16540000000
7  2017       0.667     0.017 76450000000 51011000000  1300000000
8  2018       0.668     0.188 81581000000 54490000000 15297000000
# … with 2 more variables: netmargin_check <dbl>, close_enough <lgl>

Question: summarize_industry

health_cos  %>% 
  group_by(industry)  %>% 
  summarize(mean_grossmargin_percent = mean(gp/revenue) * 100,
            median_grossmargin_percent = median(gp/revenue) *100,
            min_grossmargin_percent = min(gp/revenue) *100, 
            max_grossmargin_percent =max(gp/revenue) * 100)
# A tibble: 9 × 5
  industry          mean_grossmargi… median_grossmar… min_grossmargin…
  <chr>                        <dbl>            <dbl>            <dbl>
1 Biotechnology                 92.5            92.7             81.7 
2 Diagnostics & Re…             50.5            52.7             28.0 
3 Drug Manufacture…             75.4            76.4             36.8 
4 Drug Manufacture…             47.9            42.6             34.3 
5 Healthcare Plans              20.5            19.6             10.0 
6 Medical Care Fac…             55.9            37.4             28.1 
7 Medical Devices               70.8            72.0             53.2 
8 Medical Distribu…             10.4             5.38             2.49
9 Medical Instrume…             53.9            52.8             40.5 
# … with 1 more variable: max_grossmargin_percent <dbl>

Question: inline_ticker

health_cos_subset  <- health_cos  %>% 
  filter(ticker == "BMY")
health_cos_subset 
# A tibble: 8 × 11
  ticker name     revenue      gp    rnd netincome  assets liabilities
  <chr>  <chr>      <dbl>   <dbl>  <dbl>     <dbl>   <dbl>       <dbl>
1 BMY    Bristol… 2.12e10 1.56e10 3.84e9    3.71e9 3.30e10 17103000000
2 BMY    Bristol… 1.76e10 1.30e10 3.90e9    1.96e9 3.59e10 22259000000
3 BMY    Bristol… 1.64e10 1.18e10 3.73e9    2.56e9 3.86e10 23356000000
4 BMY    Bristol… 1.59e10 1.19e10 4.53e9    2.00e9 3.37e10 18766000000
5 BMY    Bristol… 1.66e10 1.27e10 5.92e9    1.56e9 3.17e10 17324000000
6 BMY    Bristol… 1.94e10 1.45e10 5.01e9    4.46e9 3.37e10 17360000000
7 BMY    Bristol… 2.08e10 1.47e10 6.48e9    1.01e9 3.36e10 21704000000
8 BMY    Bristol… 2.26e10 1.60e10 6.34e9    4.92e9 3.50e10 20859000000
# … with 3 more variables: marketcap <dbl>, year <dbl>,
#   industry <chr>


Run the code below

health_cos_subset  %>% 
  distinct(name) %>%  
  pull(name)
[1] "Bristol Myers Squibb Co"
co_name  <- health_cos_subset  %>% 
  distinct(name) %>% 
  pull(name)

You can take output from your code and include it in your text.

In following chuck

co_industry  <- health_cos_subset  %>% 
  distinct(industry) %>% 
  pull(industry)

This is outside the R chunk. Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.

Steps 7-11

df <- health_cos  %>% 
  group_by(industry)  %>%
  summarize(med_rnd_rev = median(rnd/revenue)) 
  1. Use glimpse to glimpse the data for the plots
df  %>% glimpse()
Rows: 9
Columns: 2
$ industry    <chr> "Biotechnology", "Diagnostics & Research", "Drug…
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.06851879, …

9.Create a static bar chart

ggplot(data = df, 
       mapping = aes(
         x = reorder(industry, med_rnd_rev ),
         y = med_rnd_rev
         )) +
  geom_col() + 
  scale_y_continuous(labels = scales::percent) +
  coord_flip() +
  labs(
    title = "Median R&D expenditures",
    subtitle = "by industry as a percent of revenue from 2011 to 2018",
    x = NULL, y = NULL) +
  theme_classic()

  1. Save the previous plot to preview.png and add to the yaml chunk at the top
ggsave(filename = "preview.png", 
       path = here::here("_posts", "2022-03-07-joining-data"))

11.Create an interactive bar chart using the package echarts4r

df  %>% 
  arrange(med_rnd_rev)  %>%
  e_charts(
    x = industry
    )  %>% 
  e_bar(
    serie = med_rnd_rev, 
    name = "median"
    )  %>%
  e_flip_coords()  %>% 
  e_tooltip()  %>% 
  e_title(
    text = "Median industry R&D expenditures", 
    subtext = "by industry as a percent of revenue from 2011 to 2018",
    left = "center") %>% 
  e_legend(FALSE) %>% 
  e_x_axis(
    formatter = e_axis_formatter("percent", digits = 0)
    )  %>%
  e_y_axis(
    show = FALSE
  )  %>% 
  e_theme("infographic")